US 20080022267A1

a2) Patent Application Publication (o) Pub. No.: US 2008/0022267 A1

a9y United States

Johnson, JR. et al.

43) Pub. Date: Jan. 24, 2008

(54) METHOD AND SYSTEM FOR
DYNAMICALLY COMPOSING
DISTRIBUTED INTERACTIVE
APPLICATIONS FROM HIGH-LEVEL
PROGRAMMING LANGUAGES

(75) Inventors: H. Bruce Johnson JR., Decatur, GA
(US); Joel Webber, Decatur, GA (US)

Correspondence Address:

WEATHERLY KERVEN & SEIGEL LLC
115 PERIMETER CENTER PLACE
SUITE 1082

ATLANTA, GA 30346-1245 (US)

(73) Assignee: GOOGLE INC., Mountain View, CA

(US)
(21) Appl. No.: 11/568,353
(22) PCT Filed: Apr. 26, 2005

(86) PCT No.: PCT/US05/14215

§ 371(c)(D),
(2), (4) Date: Oct. 26, 2006
Related U.S. Application Data

(60) Provisional application No. 60/565,443. Provisional
application No. 60/666,116, filed on Mar. 29, 2005.

Publication Classification

(51) Int.CL
GO6F 9/45 (2006.01)
(52) U.S. CL oo 717/143

(57) ABSTRACT

The present application is directed to a method and system
for dynamic composition of distributed interactive applica-
tions from high-level programming languages. A typical
system includes a system processor and a system data store
(SDS) in communication with the system processor (120).
The methods described herein may execute upon any suit-
able hardware platform such as the system processor and
SDS. The methods may further be embodied in computer
executable instructions stored upon one or more computer
readable media. Alternatively, some, or all, the steps of such
methods can be implemented in suitable hardware such as
field programmable gate arrays or application specific inte-
grated circuits; other steps, or all steps, can be implemented
via instructions executable by a general purpose processor.
An exemplary method includes the steps of: (1) receiving a
request for an interactive application from a client, (210), (2)
selecting an input program (850) in an input program
language based upon the received request. (3) Parsing the
selected input program into an abstract syntax tree (420}, (4)
updating the abstract syntax tree based upon one or more
deferred binding requests (430), and (5) generating (470) the
interactive application in a target language from the updated
abstract syntax tree.

Appiication Code

// Language-neutral code using apparent polymorphism...
AppMessages msgs = (AppMessages)DCS.create (AppMessages.class);
m_label.setCaption(msgs.MSG_1942());
m_choice.addIten(msgs.MSG_3019());
m_choice.addItem(msgs.MSG_4413()};
m_choice.addItem(msgs.MSG_6061());

Abstract Base Class

The generator uses Java
reflaction to find and parse

public abstract class AppMessages {
public abstract String MSG_1942();
public abstract String MSG_3019();
public abstract String MSG 4413();
public abstract String MSG_6061();

/ // ...more...

Deferred binding is
used to generate and
instantiate the
appropriate derived

class {in this case,

methad names, then
Invokes a transiation
service to find the German
string for each message
code, which becomes the
return value in the
corrasponding overridden
method in the generated
subclass.

Example Localized Derived Class (Generated)

when the requestar's
language is German)

}

\ public String MSG_3019() {
return "Hoch";

}

}

public final class GermanAppMessages {
public String MSG_1942() {
return "Einstellungen";

public String MSG_4413() {
return "Mittlere";

public String MSG_6061() [
return "Wenig®;

Patent Application Publication Jan. 24,2008 Sheet 1 of 8

Input Program

I

qu—

oy

Processing occurs when
the program is requested at
any arbitrary time, including

on-the-fly by an end-user

Example:
HTTP request headers
{User-Agent, Language, ...)

(43

Program Processor

120

US 2008/0022267 A1

Extensible Context
Information

)40

Example:
Server environment
variables

145

FT16. |

L

Output Program

130

Example:
Configuration database

g

Patent Application Publication Jan. 24,2008 Sheet 2 of 8

Client Component
(for example, a web
browser)

310

Client Request

(e.g. a URL denoting an HTTP GET request)

US 2008/0022267 A1

Network~ 230

L

‘7

Server Response

(e.g. an HTTP response referencing necessary

entities such as JavaScript)

Server Component
(for example, an HTTP
server extension)

A

Patent Application Publication Jan. 24,2008 Sheet 3 of 8

Request to instantiate class A

\ 4

Requested class or
interface
A

A

10

Returned instance may be A, B, or C 2’/.—-

Server component makes

deferred binding decision

about choice of substitute
class

/

Substitute class is
determined to be an
existing class

as0h

\

240

Candidate substituts class Candidate substitute class
B that extends or - C that extends or
implements A implements A

3554 2558

US 2008/0022267 A1

F16. %

Context a ko
Rules 3 30
—

Substitute class is
determined to be realized
via a class generator

;_538

A

Generator capable of
generating a substitute
class that is a viable
replacement for A

3e0

Patent Application Publication Jan. 24,2008 Sheet 4 of 8 US 2008/0022267 A1

Begin

Client component (often a

web browser) requests an

application via a URL with
the HTTP protocol

wo.

Server component parses

the Java input program to s ;
create an abstract syntax < : Java input program
tree (AST) -
: S
49 —_—
ﬂ N e e seme T ,..,Am....,4<'A
Modify the AST by
replacing deferred binding
instantiations of the
requested class with the
substitute class
450
——
J Y
oes the AST contain qw
a(nother) deferred
binding request?
Yes
Make a deferred binding | No

decision m i

40

Optimize the AST
0
46",
Gener?::n;)?;:ic;i_?t code > JavaScript output program
470 415

End

Patent Application Publication Jan. 24,2008 Sheet S of 8

Deferred binding is
used to generate and
instantiate the
appropriate derived
class (in this case,
when the requestar's
language is German)

Application Code

US 2008/0022267 A1

<

// Language-neutral code using apparent polymorphism...
AppMessages msgs = (AppMessages)DCS.create (AppMessages.class);
m_label.setCaption(msgs.MSG_1942());
m _choice.addItem(msgs.MSG 30139());
m_choice.addItem(msgs.MSG 4413());

m _cholce.addItem(msgs.MSG _6061());

“

Abstract Base Class

public abstract class AppMessages {
public abstract String MSG_1942()
public abstract String MSG_3019{)
public abstract String MSG_4413{)
public abstract String MSG 6061 {)
// ...more...

i
;
i
i

}:

\/\

Example Localized Derived Class (Generated)

public final class GermanAppMessages {
public String MSG_1942() {
return "Einstellungen™;
}
public String MSG _3012() {
return "Hoch";
¥
public String MSG 4413() {
return "Mittlere";
}
public String MSG _6061() {
return "Wenig";
}
b:

The generator uses Java
reflection to find and parse
method names, then
invokes a translation
service to find the German
string for each message
cade, which becomes the
return value in the
corresponding overridden
method in the generated
subclass.

F16.5

Patent Application Publication Jan. 24,2008 Sheet 6 of 8 US 2008/0022267 A1

Handwritten JavaScript Code neatly integrated into Java code via "native"

class InternetExplorer6é extends JavascriptBrowser {
// ... more methods here

public native long createInputRadioElement (String group} /*{
var elem = parent.document.createElement ("<INPUT type='RADIO' name='" -+
group + e >") ;
return elem;
¢/
public native String iframeGetSrc(long h) /*{
return h.contentWindow.document.,URL;
Y¥/:

// ... more methods here ...

FIe b

Patent Application Publication Jan. 24,2008 Sheet 7 of 8

Most distance from end-user (slowast)

Cached Output Program is closer to the Client Component, thus decreasing startup latency and network copying

Output Program cached in
RAM or on disk directly
accessible to the Server
Component

4

Qutput Program cached in
RAM or on disk directly
accessible by the web
server with which the
Server Component is
integrated

y

Qutput Program cached in
RAM or on disk directly
accessible by intermediate
proxy, mirror, ar accelerator
web servers on the Internet,

/

Qutput Program cached in
RAM or on disk directly
accessible by infermediate
proxy, mirror or accelerator
web servers on a network
locally accessible by the
Client Component

Least distance from end-user (fastest)

A

Output Program cache in
RAM or on disk diractly
accessible by the Client
Component, aveiding a

network fetch. An example
is a web browser cache.

US 2008/0022267 A1

users concurrently and

Any of these stages can
> be clustered to serve mare
improve throughput

10

Fxre. 7

Patent Application Publication Jan. 24,2008 Sheet 8 of 8 US 2008/0022267 A1

8208

,/‘5 %/ Qutput Program
F . Strong name: A1234Z

At an arbitrary time, the output program
is generated from the input program
and given its strong name based soley
upon its contents. Note that this server
instance is unaware of server instance

810A

Clustered Server
Component Instance
#1

(1) Request application P

(2) Receive response wrapper :
¢——referencing output program with—————————

strong name "A1234Z" M _
830 : : 850
Client Component . Cluster of Server Components Input Program
(5) If not cached, request the output ~ * (810B .
program by the strong name in the ———»
response wrapper : Clustered Server
. Component Instance
(6) Receive the corect output program . #2
from server instance #2, even though the
response wrapper was generated by server ’ Y
instance #1 .

At an arbitrary time, the output program
Is generated from the input program
and given its strong name based solely
upon on its contents. Note thal this

{4) If cached, there is no server instance is unaware of server
need to verify the freshness instance #1.
of the output program
840 820B
Copy of output program
A1234Z cached locally near Output Program

the cllent companent Strong name: A1234Z

(3) Check nearby cache for
the output program, using
only the strong name

US 2008/0022267 Al

METHOD AND SYSTEM FOR DYNAMICALLY
COMPOSING DISTRIBUTED INTERACTIVE
APPLICATIONS FROM HIGH-LEVEL
PROGRAMMING LANGUAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims priority pursuant to
35 U.S.C. §119(e) to commonly owned U.S. Provisional
Application Nos. 60/565,443 and 60/666,116, both of which
are fully incorporated herein for all purposes by this refer-
ence.

BACKGROUND

[0002] The present application is directed to a method and
system for dynamic composition of distributed interactive
applications from high-level programming languages. The
Internet is a global network of connected computer net-
works. Over the last decade, the Internet has grown in
significant measure. A large number of computers on the
Internet provide information in various forms. Anyone with
a computer connected to the Internet can potentially tap into
this vast pool of information.

[0003] The information available via the Internet encom-
passes information available via a variety of types of appli-
cation layer information servers such as SMTP (simple mail
transfer protocol), POP3 (Post Office Protocol), GOPHER
(RFC 1436), WAIS, HTTP (Hypertext Transfer Protocol,
RFC 2616) and FTP (file transfer protocol, RFC 1123).

[0004] One of the most wide spread methods of providing
information over the Internet is via the World Wide Web (the
Web). The Web consists of a subset of the computers
connected to the Internet; the computers in this subset run
Hypertext Transfer Protocol (HTTP) servers (Web servers).
Several extensions and modifications to HTTP have been
proposed including, for example, an extension framework
(RFC 2774) and authentication (RFC 2617). Information on
the Internet can be accessed through the use of a Uniform
Resource Identifier (URI, RFC 2396). A URI uniquely
specifies the location of a particular piece of information on
the Internet. A URI will typically be composed of several
components. The first component typically designates the
protocol by which the address piece of information is
accessed (e.g., HTTP, GOPHER, etc.). This first component
is separated from the remainder of the URI by a colon (*:*).
The remainder of the URI will depend upon the protocol
component. Typically, the remainder designates a computer
on the Internet by name, or by IP number, as well as a more
specific designation of the location of the resource on the
designated computer. For instance, a typical URI for an
HTTP resource might be:

[0005] http://www.server.com/dirl/dir2/resource.htm

[0006] Where HTTP is the protocol, www.server.com is
the designated computer name and /dirl/dir2/resouce.htm
designates the location of the resource on the designated
computer. The term URI includes Uniform Resource Names
(URN’s) including URN’s as defined according to RFC
2141.

[0007] Web servers host information in the form of Web
pages; collectively the server and the information hosted are
referred to as a Web site. A significant number of Web pages

Jan. 24, 2008

are encoded using the Hypertext Markup Language (HTML)
although other encodings using SGML, eXtensible Markup
Language (XML), DHMTL or XHTML are possible. The
published specifications for these languages are incorpo-
rated by reference herein; such specifications are available
from the World Wide Web Consortium and its Web site
(http://www.w3c.org). Web pages in these formatting lan-
guages may include links to other Web pages on the same
Web site or another. As will be known to those skilled in the
art, Web pages may be generated dynamically by a server by
integrating a variety of elements into a formatted page prior
to transmission to a Web client. Web servers, and informa-
tion servers of other types, await requests for the information
from Internet clients.

[0008] Client software has evolved that allows users of
computers coinected to the Internet to access this informa-
tion. Advanced clients such as Netscape’s Navigator and
Microsoft’s Internet Explorer allow users to access software
provided via a variety of information servers in a unified
client environment. Typically, such client software is
referred to as browser software.

[0009] Many of these browsers include an ability to per-
form interpretative execution of scripted applications down-
loaded from a server. The systems and methods described
herein support rapid development and deployment of appli-
cations for use in Web browsers.

SUMMARY

[0010] The present application is directed to a method and
system for dynamic composition of distributed interactive
applications from high-level programming languages. A
typical system includes a system processor and a system
data store (SDS) in communication with the system proces-
sor. The system processor can include one or more process-
ing elements. The system processor also communicates with
a communications adapter connected to a communication
channel. The communication channel may allow communi-
cation from the system processor to one or more client
computers each executing a Web browser.

[0011] The methods described herein may execute upon
any suitable hardware platform such as described above, or
alternatively in more detail below. The methods may further
be embodied in computer executable instructions stored
upon one or more computer readable media. Alternatively,
some, or all, the steps of such methods can be implemented
in suitable hardware such as field programmable gate arrays
or application specific integrated circuits; other steps, or all
steps, can be implemented via instructions executable by a
general purpose processor.

[0012] The present application describes methods for
dynamic composition of distributed interactive applications
from high-level programming languages. One such method
includes the steps of: (1) receiving a request for an interac-
tive application from a client, (2) selecting an input program
in an input program language based upon the received
request, (3) parsing the selected input program into an
abstract syntax tree, (4) updating the abstract syntax tree
based upon one or more deferred binding requests, and (5)
generating the interactive application in a target language
from the updated abstract syntax tree. The steps recited here,
and further, related below and in the claims that follow do
not follow any specific order unless the context clearly

US 2008/0022267 Al

requires such an order; accordingly, reference letters or
numbers preceding a step are provided for reference purpose
only and do not imply limitation to a particular order.
Further, in some implementations, a single step can include
multiple functions; alternatively, multiple steps can be com-
bined into a single function.

[0013] Additional advantages will be set forth in part in
the description which follows, and in part will be obvious
from the description, or may be learned by practice of the
invention. The advantages of the disclosed systems and
methods will be realized and attained by means of the
elements and combinations particularly pointed out herein.
It is to be understood that both the general description and
the detailed description are exemplary and explanatory only
and are not restrictive of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 displays an abstract overview of dynamic
composition of an interactive program from an input pro-
gram.

[0015] FIG. 2 represents a typical environment capable of
implementing the present systems and methods.

[0016] FIG. 3 depicts an exemplary process for deferred
binding.

[0017] FIG. 4 is a process diagram displaying steps in an
interactive application generation.

[0018] FIG. 5 is a diagram illustrating generator usage of
context information in several ways.

[0019] FIG. 6 displays an example incorporation of native
code in the target language of the composed interactive
program embedded within the input program.

[0020] FIG. 7 shows the various stages at which output
programs can be cached in a typical web-oriented imple-
mentation.

[0021] FIG. 8 depicts an exemplary naming and caching
approach.

DETAILED DESCRIPTION

[0022] Exemplary systems and methods are now
described in detail in the attached documents and the incor-
porated compact disc appendix. As used in the description
herein, the meaning of “a,”*“an,” and “the” includes plural
reference unless the context clearly dictates otherwise. Also,
as used in the description herein, the meaning of “in”
includes “in” and “on” unless the context clearly dictates
otherwise. Finally, as used in the description herein, the
meanings of “and” and “or” include both the conjunctive
and disjunctive and may be used interchangeably unless the
context clearly dictates otherwise; the phrase “exclusive or”
may be used to indicate situation where only the disjunctive
meaning may apply.

[0023] The hardware of a typical execution environment
for one or more of the components supporting the applica-
tion development, composition and deployment function of
the described systems and methods may include a system
processor potentially including multiple processing ele-
ments, that may be distributed across the hardware compo-
nents, where each processing element may be supported via
a general purpose processor such as Intel-compatible pro-

Jan. 24, 2008

cessor platforms preferably using at least one PENTIUM
class or CELERON class (Intel Corp., Santa Clara, Calif.)
processor; alternative processors such as UltraSPARC (Sun
Microsystems, Palo Alto, Calif.) and IBM zSeries class
processors could be used in other embodiments, it is
expected that future processors will be supported by the
various implementations. In some embodiments, application
development, composition and deployment, as further
described below and in the attached and incorporated docu-
ments and compact disc appendix, may be distributed across
multiple processing elements. The term processing element
may refer to (1) a process running on a particular piece, or
across particular pieces, of hardware, (2) a particular piece
of hardware, or either (1) or (2) as the context allows.

[0024] Some implementations can include one or more
limited special purpose processors such as a digital signal
processor (DSP), application specific integrated circuits
(ASIC) or a field programmable gate arrays (FPGA). Fur-
ther, some implementations can use combinations of general
purpose and special purpose processors.

[0025] The hardware further includes a system data store
(SDS) that could include a variety of primary and secondary
storage elements. In one preferred embodiment, the SDS
would include RAM as part of the primary storage. The
primary storage may in some embodiments include other
forms of memory such as cache memory, registers, non-
volatile memory (e.g., FLASH, ROM, EPROM, etc.), etc.

[0026] The SDS may also include secondary storage
including single, multiple and/or varied servers and storage
elements. For example, the SDS may use internal storage
devices connected to the system processor. In embodiments
where a single processing element supports all of the system
functionality a local hard disk drive may serve as the
secondary storage of the SDS, and a disk operating system
executing on such a single processing element may act as a
data server receiving and servicing data requests.

[0027] It will be understood by those skilled in the art that
the different information used in the systems and methods
disclosed herein may be logically or physically segregated
within a single device serving as secondary storage for the
SDS; multiple related data stores accessible through a uni-
fied management system, which together serve as the SDS;
or multiple independent data stores individually accessible
through disparate management systems, which may in some
embodiments be collectively viewed as the SDS. The vari-
ous storage elements that comprise the physical architecture
of the SDS may be centrally located or distributed across a
variety of diverse locations.

[0028] The architecture of the secondary storage of the
system data store may vary significantly in different embodi-
ments. In several embodiments, database(s) are used to store
and manipulate the data; in some such embodiments, one or
more relational database management systems, such as DB2
(IBM, White Plains, N.Y.), SQL Server (Microsoft, Red-
mond, Wash.), ACCESS (Microsoft, Redmond, Wash.),
ORACLE 8i (Oracle Corp., Redwood Shores, Calif.), Ingres
(Computer Associates, Islandia, N.Y.), MySQL (MySQL
AB, Sweden) or Adaptive Server Enterprise (Sybase Inc.,
Emeryville, Calif.), may be used in connection with a variety
of storage devices/file servers that may include one or more
standard magnetic and/or optical disk drives using any
appropriate interface including, without limitation, IDE and

US 2008/0022267 Al

SCSI. In some embodiments, a tape library such as Exabyte
X80 (Exabyte Corporation, Boulder, Colo.), a storage
attached network (SAN) solution such as available from
(EMC, Inc., Hopkinton, Mass.), a network attached storage
(NAS) solution such as a NetApp Filer 740 (Network
Appliances, Sunnyvale, Calif.), or combinations thereof
may be used. In other embodiments, the data store may use
database systems with other architectures such as object-
oriented, spatial, object-relational or hierarchical.

[0029] Instead of, or in addition to, those organization
approaches discussed above, certain embodiments may use
other storage implementations such as hash tables or flat
files or combinations of such architectures. Such alternative
approaches may use data servers other than database man-
agement systems such as a hash table look-up server, pro-
cedure and/or process and/or a flat file refrieval server,
procedure and/or process. Further, the SDS may use a
combination of any of such approaches in organizing its
secondary storage architecture.

[0030] The hardware components may each have an
appropriate operating system such as WINDOWS/NT, WIN-
DOWS 2000 or WINDOWS/XP Server (Microsoft, Red-
mond, Wash.), Solaris (Sun Microsystems, Palo Alto,
Calif.), or LINUX (or other UNIX variant). Depending upon
the hardware/operating system platform of the overall envi-
ronment, Web server functionality may be provided via an
Internet Information Server (Microsoft, Redmond, Wash.),
an Apache HTTP Server (Apache Software Foundation,
Forest Hill, Md.), an iPlanet Web Server (iPlanet E-Com-
merce Solutions—A Sun—Netscape Alliance, Mountain
View, Calif.) or other suitable Web server platform. Browser
software can communicate with such server software
according to the methods as further described below.

[0031] As shown in FIG. 1, a typical process consumes a
program description (“input program”) 110 and, by option-
ally accounting for a variety of situational factors (“con-
text”) 140, produces 140 an enhanced derived output pro-
gram (“output program”) 130. Input programs, and
consequently the associated output programs, are general-
purpose in nature and need not be oriented toward any
particular industry- or domain-specific concepts.

[0032] With reference to FIG. 2, a typical implementation
of the methods described herein includes one or more server
components (e.g., 210) that process the input program to
produce the output program in response to requests by one
or more client components (e.g., 220). Both client and server
components would typically be implemented as software
modules capable of interacting over a suitable communica-
tion channel according to an appropriate communication
protocol. The communication channel is preferably a com-
puter network 230 according to an appropriate networking
protocol such as TCP/IP or higher-level protocols such as
HTTP. Server components would typically be designed
either as standalone processes (for example, an HTTP
server) or as plug-ins for other host processes (for example,
extensible HTTP servers such as Microsoft IIS or Apache
httpd). Client components would typically be designed as
applications capable of being redirected by their users to
arbitrary logical network locations. A well-known example
of such a client component is a web browser that allows its
user to specify a network location via a URL and which
sends and receives information using the HTTP protocol.

Jan. 24, 2008

Other examples of appropriate client components include
Java WebStart, a networked application “launcher.”

[0033] The described system does not dictate the specific
form of the input program. Any unambiguous expression of
an author’s intent in a computer-readable form is a poten-
tially valid input program, including but not limited to
program descriptions expressed using imperative program-
ming languages such as the Java, C, C++, C#, or JavaScript
languages, declarative programming languages such as the
Prolog language or structured specifications as might be
expressed with an XML -based schema, functional program-
ming languages such as the Haskell or LISP languages, any
other method for expressing the behavior of software that
can be parsed and analyzed programmatically, or any com-
bination of the foregoing. A typical implementation of the
methods described herein consumes input programs written
as source code in the Java programming language, because
of its popularity.

[0034] TImplementations of the described system that sup-
port certain choices of programming languages for devel-
oping input programs may offer additional benefits if the
input program can be analyzed and manipulated by tools via
suitable preprocessing steps. For example, an implementa-
tion whose input programs are written in the Java language
benefit from the existence of a universe of Java tools such as
development environments, debuggers, profilers, code cov-
erage analysis tools, unit testing tools and so on. This is
relevant to the system described herein because even when
the output program is not amenable to tools (or such tools
are unavailable) to the same extent as the input program, the
output program essentially captures the benefits of the input
program being amenable to such tools. Continuing with the
previous example, if input programs are written in, for
example, the Java language and output programs are gen-
erated in the JavaScript language, the deficit of useful
JavaScript tools is overcome by the combined facts that (1)
the author of the input program is working in the Java
language, which does have many useful and applicable tools
and (2) the system and methods described herein ensure that
output programs are essentially equivalent in functionality to
the input program. In other words, the author is only
concerned with the input program (the one to which good
tools can be applied); the system ensures that the output
program ““just works.” If input programs are written in the
Java language, for example, it is possible to introduce a
concept such as “hosted mode” in which software develop-
ers can edit, run, test and debug their input programs in a
completely Java-centric environment, then later create out-
put programs in a completely different language (for
example, JavaScript). The effect is that developers can work
in the very productive “hosted mode” development envi-
ronment without concern for the language or format of the
ultimate output program.

[0035] The described system may use an open-ended set
of context information during the production of the output
program, thereby influencing how the methods of translation
impart form, structure, behavior, and other attributes to the
output program. Context information that may influence the
translation process may include, without limitation, (1) data
specified implicitly by the requesting client (for example, in
a typical implementation using the HTTP protocol the client
might automatically send information about its stored
“cookies” and other standard HTTP request headers such as

US 2008/0022267 Al

its “User-Agent” designation”), (2) data specified explicitly
by the requesting client (for example, in an HTTP-based
implementation the client would send a query string from a
user-supplied URL, explicit HTTP request headers, and
other data resulting from program execution within the
client), (3) data implicitly available to server components
regarding their execution environment (for example, using
the operating system idiom of “environment variables” or
application programming interfaces provided by the oper-
ating system that describe the hardware and software con-
figuration of the server component’s host platform such as
cultural and localization settings, system date, system time
and other settings), and (4) data explicitly available to server
components as specified by the author or publisher of
software via the described system (for example, specifying
values for Java system properties).

[0036] The described system need not dictate availability
of any particular types of context information, but instead
may be implemented to be extensible by “context plug-ins”
so that new sources of context information can be made
available by adding to, rather than modifying, the system. A
typical implementation could use established mechanisms
for dynamically loading code, including but not limited to
designated Java classes, dynamic link libraries (DLLs),
shared object code, and similar facilities for runtime loading
of code. Designating which context plug-ins are used in a
particular deployment of a system may be a reconfigurable
choice, and the set of context plug-ins need be neither fixed
nor implied by the server component in any way. A typical
implementation might store such information in a suitable
data store such as database or structured file.

[0037] The output program can be produced at an arbitrary
time relative to when the output program is needed by a
client. A typical implementation could provide the ability to
produce the output program ahead of time (that is, before a
client requests it), making it possible to produce pre-com-
puted versions of the output program, allowing its user to
assert at least some context information for which the output
program should be created, including the ability to specify
a URL query string, arbitrary HTTP request headers, and
other system properties that can influence the production of
the output program. This ability to pre-compute output
programs is beneficial when there are many output program
variations and the delay due to processing on-the-fly is
undesirable.

[0038] The described system instead, or in addition, could
have the ability to delay production of output programs until
a client actually requests a program. The ability to produce
the output program on-the-fly enables usage scenarios in
which even the timeframe of the request can affect the output
program produced. For example, if the output program is
designed to include generated code whose content is based
on the current state of data in a database, the system’s ability
to wait until a request is actually made (as opposed to
producing the output program ahead of time without regard
to the timing of the request) allows production of the most
up-to-date output program possible. A typical implementa-
tion may support on-the-fly production of output programs
by insinuating itself into the process of fulfilling HTTP
requests.

[0039] For input programs written in a statically typed
object-oriented programming language such as the Java

Jan. 24, 2008

language, a preferred method of accounting for context
when producing the output program is termed “deferred
binding” as depicted in FIG. 3, wherein the server compo-
nent transparently replaces a request to instantiate one class
or interface 310—(with said request possibly being made
indirectly via a “factory” method, as appropriate for the
semantics of the input language) with a request to instantiate
another class that is a compatible alternative such that the
requesting code need not be aware of the substitution by
virtue of polymorphism or a similar abstraction mechanism.
The choice of which class to substitute for the requested
class or interface (the “deferred binding decision™) is a
function of both the context 320 at the time of the program
request as well as a set of rules 330.

[0040] A typical implementation of a deferred binding
configuration consists of a set of criteria, a set of coniexts
320, and a set of rules 330. The class or interface being
instantiated that is subject to deferred binding is referred to
as the “requested class” or the “requested interface,” respec-
tively. Subsequent references to a “requested class” should
be understood to also mean “requested class or interface.”
The result of a deferred binding decision 340 is the name of
a class that should be substituted for the requested class (the
“substitute class™) (e.g., 350A, 350B).

[0041] A criterion can be expressed as any compatible
Java class, referred to in the configuration by its fully-
qualified name (e.g. “com.innuvo.dcs.server.criteria.U-
serLanguage”). Criteria are used as “decision axes” on
which deferred binding decisions can be made. Similarly, a
context plug-in can be expressed as any compatible Java
class, referred to in the configuration by its fully-qualified
name (e.g. “com.innuvo.dcs.server.contexts.Ht-
tpRequestContext”). Contexts are used to fetch and normal-
ize values associated with criteria so that criteria values can
be referred to within rules without regard to exactly where
they originate.

[0042] For each criterion, the configuration specifies
which context supplies its request value. A “request value”
is a string value associated with a particular criterion. Each
unique application request can have a different set of request
values. However, for the duration of any particular request,
a request value is typically unchanging once supplied by a
context.

[0043] Typically, each deferred binding rule has (1) a
matching behavior that determines how strongly it should be
considered as a candidate for the one “deciding rule” to
make the deferred binding decision and (2) a collection of
actions, at most one of which is to be invoked if its
containing rule is selected as the deciding rule. The follow-
ing rule matching behaviors are typical, although additional
behaviors could be added: (1) a “class-is” rule applies when
the requested class is a particular specified class; (2) an
“interface-is” rule applies when a requested interface is a
particular specified interface; (3) a “class-extends” rule
applies when the input class directly or indirectly extends a
specified class; (4) an “interface-extends” rule applies when
the requested interface directly or indirectly extends the
specified interface; and (5) a “class-implements” rule applies
when the requested class directly or indirectly implements a
specified interface. In the preferred implementation, the
deciding rule is chosen by computing a score for every rule
based on how specifically the rule matches the requested

US 2008/0022267 Al

class. The rule receiving the highest score and thus being the
most specific is chosen as the deciding rule. It is also
possible that no rule applies, in which case an implementa-
tion would typically instantiate the requested class itself
without substitution.

[0044] Each action has a set of conditions that can be
matched to evaluate how well the action fits the current
request. Each condition specifies a criterion and a match
value. A match value is compared against a corresponding
request value having the same criterion and is used to test
whether or not a condition is met. A match value can be an
exact string to match (for example, “en”) or the wildcard
value (“*”), which matches any request value.

[0045] After a deciding rule is chosen, one of its actions is
invoked. The invoked action ultimately “realizes” a substi-
tute class that is then instantiated and returned in lieu of the
requested class. Realizing a substitute class means that code
can be executed in the process of determining the name
and/or the content of the substitute class; this code can, for
example, generate the substitute class from scratch during
the deferred binding operation.

[0046] The following types of actions are typical, although
many types of actions could be added: (1) a “replace-with”
action (e.g., 355A, 355B) that realizes the substitute class
trivially by returning a particular class name that is always
the same and which is assumed to already exist and (2) a
“generate-using” action (e.g., 360) that realizes the substi-
tute class dynamically by delegating to a specific generator
the decision of which class is chosen.

[0047] A deferred binding “generator” can be expressed as
any compatible Java class, referred to in the configuration by
its fully-qualified name (e.g. “com.innuvo.dcs.server.gen-
erators.StringClassGenerator”). A generator would typically
be invoked when performing a “‘generate-using” action.
Generators execute arbitrary code to complete the deferred
binding operation. For example, a generator may (1) pro-
grammatically compute the name of the substitute class, (2)
gather data from the request or from other data sources, (3)
ensure that the substitute class is up-to-date, (4) create the
source code for the substitute class if it does not exist, or (5)
perform combinations of the preceding or other actions to
determine and realize the substitute class.

[0048] A typical algorithm for deferred binding follows.
Requested interfaces and their related rule match behaviors
are not shown explicitly, although they could be easily
introduced into the rule selection algorithm.

[0049] 1. Let class A be the requested class.

[0050] 2. Search the deferred binding rules for the most
appropriate rule R to apply to A:

[0051] 2.1. If there is a “class-is” rule specifying A, then
that rule is chosen as R.

[0052] 2.2. If R has not been decided, consider each
“class-extends-X" rule, where X names a Java class that
A directly or indirectly extends. Of these rules, if any, the
one specifying an X that is the nearest ancestor of A is
chosen as R.

[0053] 2.3. If R has not been decided, consider each
“class-implements-Y” rule, where Y names a Java inter-

Jan. 24, 2008

face that A directly or indirectly implements. Of these
rules, if any, the one implemented by A or A’s nearest
superclass is chosen as R.

[0054] 3. If no rule applies, the output class is A. The
operation terminates here. In this case, no substitution
occurs.

[0055] 4. Score each action to find the best action T:
[0056] 4.1. Let T be initially undefined.
[0057] 4.2. Assume the highest score is —1.

[0058] 4.3. For each action K of rule R, compute a test
score (initially 0) as follows:

[0059] 4.3.1. For each condition D of K, adjust the test
score as follows:

[0060] 4.3.1.1. Let U be D’s criterion.
[0061] 4.3.1.2. Let V be D’s match value.

[0062] 4.3.1.3.Let W be the request value for the criterion
U. If the request value for criterion U is undefined, first

invoke the context responsible for it so that it becomes
defined.

[0063] 4.3.1.4.If V is exactly equal to W, then increment
the test score for K by one.

[0064] 4.3.1.5.Otherwise, if V is the wildcard match value
“*”_do not adjust the test score of K.

[0065] 4.3.1.6. Otherwise, V and W are mismatches and K
is removed from consideration as a candidate for T.

[0066] 4.3.2. IfK s still a candidate for T and its test score
is greater than the highest score, K becomes T because it
is the best known action (its permanent status as T is
pending the examination of other actions that may have
higher test scores). Record the highest score as being K’s
test score.

[0067] 4.4.1f no best action T was found, the output class
is A. The operation terminates here. In this case, no
substitution occurs.

[0068] 4.5. Determine the substitute class by performing
the action T. If T is defined, then realize the output class
by performing the action denoted by T. This may involve
executing code designated by T. The operation terminates
here. In this case, a substitution may occur if the output
class realized by T is a class other than A.

[0069] FIG. 4 depicts an example implementation of the
described system that is oriented toward creating interactive
web applications. An end user’s client component (e.g., Web
browser) requests a particular application in step 410. The
server component receives the request and recognizes that
an interactive web application should be generated. In step
420, the server component parses the high level input
program such as Java input program 415 into an abstract
syntax tree (AST). A determination is then made as to
whether the AST has any remaining deferred binding
requests in step 430. If so, a deferred binding decision occurs
in step 440; a particular exemplary deferred binding decision
process is depicted in FIG. 3. The AST is then updated in
step 450 based upon the deferred binding decision and the
process continues with a further decision at step 430. Once
no further unserviced deferred binding requests remain in

US 2008/0022267 Al

the AST, the AST is optimized in step 460. In step 470,
JavaScript code (the requested interactive web application)
475 is generated from the optimized AST.

[0070] Input programs can be written in the Java language
and output programs are produced by compiling the input
program into the JavaScript language. This implementation
can be thought of as a “request-time compiler,” several
benefits of which stem at least in part from the confluence of
two aspects of the system’s design. (1) Delaying compila-
tion until a request is made allows information about the
requester to be included in deferred binding decisions. This
is beneficial because it provides, among other benefits, an
opportunity to conditionally include subsets of the input
program that are relevant to the requester while excluding
subsets of the input program that are not relevant. (2)
Deferred binding substitutions can occur during compilation
rather than when the output program is already running (as
is the case with traditional “factory pattern” implementa-
tions in the prior art), allowing the compiler’s analysis,
optimization, and code generation phases to take the exact
type of substitute classes into account, as opposed to being
forced to treat them polymorphically. Deferred binding
instantiations can be treated “as if the developer had chosen
the substitute class in the first place.”

[0071] As one example of why request-time compilation is
valuable, consider that the web browser’s “User-Agent”
identifier can inform deferred binding decisions such that
only code appropriate for the requesting web browser need
be included in the output program. A variety of benefits
result, including: (1) unneeded code (for example, code to
support user agents other than the requester) is not reflected
in the output program, thus reducing its size, improving its
download time, and decreasing its memory consumption; (2)
the compiler’s optimizer can thoroughly analyze the pro-
gram using knowledge of the exact types of substitute
classes, providing a wealth of information for optimizing the
output program in terms of size, speed or combinations
thereof (including but not limited to method inlining, dead
code elimination, loop unrolling, and other compiler opti-
mizations); and (3) the deferred binding mechanism pro-
vides a structured and efficient way to “fork” code that is
external to the input program, thus sparing the input program
from scattering “if-then-else” tests throughout to achieve
code forking—such tests would otherwise be burdensome in
terms of size, runtime speed, and maintainability.

[0072] An implementation may also choose to add the
additional restriction that no code may be dynamically
loaded in the output program as it runs, allowing the
optimizer to perform deep global optimizations by inferring
extra information about the program structure such as iden-
tifying classes that are implicitly “final” (fo use the Java
vocabulary) and whose methods are therefore candidates for
inlining and subsequent optimizations.

[0073] In a typical implementation, an algorithm such as
deferred binding provides an extensible framework for intro-
ducing on-demand code generation. FIG. 3 shows an exem-
plary approach to how a substitute class can be created as
needed during the decision process. When substitute classes
are generated, the system could typically ensure that context
information, including the type of the requested class, is
available to inform the code generation process.

[0074] Generators can use this context information in a
variety of ways, including but not limited to (1) determining

Jan. 24, 2008

what to name the generated class, (2) determining how to
access data that will be infused into the generated class (for
example, providing a database “connection string”), and (3)
using type interrogation techniques (for example, Java
reflection) to examine the requested class for purposes such
as (a) inferring how to generate the substitute class in a
compatible way, such as knowing which methods to override
and (b) allowing the contents of the requested class itself to
affect code generation, such as by parsing code comments
for metadata or by enumerating, parsing the names of, or
invoking methods on an instance of the requested class. In
other words, the requested class itself can guide the behavior
of the generator. Such useage is illustrated in FIG. 5.

[0075] In one preferred implementation of the system, a
deferred binding generator is used to automatically produce
remote procedure call (RPC) proxies that are automatically
integrated into the output program without programmer
intervention. This approach is desirable because traditional
RPC techniques require programmers to perform a separate,
explicit step such as running a proxy/stub compiler to
generate the required proxy and stub classes. The imple-
mentation referred to above uses Java reflection to examine
a requested interface, analyzing the names, parameter types
and return types of its methods to generate a substitute class
that automatically performs the caller-side serialization of
RPC calls as well as deserialization of RPC results.

[0076] One preferred implementation of the described
system provides the ability to smoothly integrate portions of
code written directly in the language of the output program
(or in principle any other language) within the input program
in a reasonably natural way, referred to herein as “native
code integration.” This facility follows the tradition of
analogous techniques such as allowing inline assembly in C
language source code. In one implementation that translates
Java into JavaScript, for example, the ability to intertwine
handwritten JavaScript into a Java class definition has
proven very useful for writing low-level and/or perfor-
mance-sensitive code. The ability to intermingle handwrit-
ten JavaScript with the system’s generated output program
(that is, generated JavaScript) in a structured way provides
a productive and low-risk method of writing the lowest-level
code required for the output program to work (that is, the
kernel JavaScript code upon which the rest of the output
program depends); FIG. 6 depicts an exemplary incorpora-
tion of native JavaScript code.

[0077] In addition, this facility may be open to use by any
author of input programs so as to make it possible to create
integration libraries and other tasks that necessitate bypass-
ing the language of the input program and accessing con-
cepts in the language of the output program directly.
Examples of how this facility could be utilized include Java
programming interfaces encapsulating JavaScript code to
interface with browser-hosted ActiveX controls or other
plug-ins such as Macromedia Flash as well as selectively
writing critical algorithms in the language of the output
program to improve performance or reduce size.

[0078] It is possible to create an implementation of the
described system that combines one or more techniques
described above in combination, namely (1) deferred bind-
ing code-generation, (2) native code integration, and/or (3)
a hosted mode facility, to provide a uniquely productive
environment. Using the example of Java input programs and

US 2008/0022267 Al

JavaScript output programs, a hosted mode facility allows
development and debugging of input programs using Java
tools. A complication arises when native code integration is
introduced in that a hosted mode Java environment does not
understand JavaScript. In FIG. 6, for example, the hand-
written JavaScript is in a Java comment and is completely
stripped away when the Java input program is running in
hosted mode. This would appear to limit the utility of hosted
mode in cases where native code integration was required.

[0079] Deferred binding generators can solve this prob-
lem: a generator can be invoked to create a subclass on the
fly in hosted mode for any class containing handwritten
JavaScript that invokes a subsystem for injecting actual
JavaScript into the process as it is running. Such a generator
would examine the requested class to parse out the methods
as well as the specially-formatted comments containing
JavaScript. As an example of how this parsed JavaScript can
be used in hosted mode, note that it is possible to create a
Win32 DLL that is accessible via a Java Native Interface
(ONI) library that hosts the Internet Explorer browser
ActiveX control in a Win32 window; this JNI library pro-
vides access to the Internet Explorer “script” object that
allows arbitrary JavaScript to be executed. The generated
subclass, then, can use the JNI pass-through DLL to send
JavaScript to Internet Explorer for execution without the
hosted mode development system being aware of anything
other than the Java language. In this example implementa-
tion, the combination of these fundamental techniques
allows Java code to arbitrarily integrate JavaScript in a
hosted mode environment. When an output program is
produced that is completely JavaScript, the contents of the
specially-formatted comment blocks (that is, the handwrit-
ten JavaScript) can be seamlessly emitted into the produced
output program.

[0080] When possible, if the language of the output pro-
gram supports exceptions or other ways of indicating errors,
implementations of the described system may attempt to
transparently integrate such error-handling mechanisms into
the language of the input program. This prevents software
developers from having to consider error-handling scenarios
that occur in an output program in terms of mechanisms that
are not present in the language of the input program. For
illustration, Java input programs have an exception mecha-
nism defined, while JavaScript output programs also have an
exception mechanism defined that is different that the Java
mechanism. The result is that code to handle exceptions in
the Java input program is not necessarily sufficient to catch
all exceptions that might occur in the JavaScript output
program. One preferred implementation automatically gen-
erates special code in the output program that transforms
unhandled JavaScript exceptions into a form that can be
caught by the structures generated by the Java code written
by the author of the input program. That is, a Java input
program can be written to catch “RuntimeException”
objects and any error that occurs while the JavaScript output
program is running that is unique to JavaScript will be
automatically caught and transformed into a RuntimeExcep-
tion object which can be caught. This technique unifies
exception handling into the language of the input program,
which greatly simplifies input program development.

[0081] Because the described system performs a transla-
tion of the input program to an equivalent output program,
it has the opportunity to use “hints” from the input program

Jan. 24, 2008

to guide code generation and optimization. This ability may
be of particular importance when certain aspects of the
language of the input program are difficult or inefficient to
implement in the language of the output program.

[0082] An example of this occurs in an implementation
that produces JavaScript applications from Java applica-
tions. In the Java language, static class initialization code is
always guaranteed to have been called before any static
methods or fields are accessed. The structure of the Java
language necessitates inserting many tests into the output
program to ensure that any static initialization code is called
before static members are accessed. Because size and speed
are at a premium in the JavaScript language, it is preferable
to avoid these tests. A preferred implementation of the
system implements a “noinit” class modifier, which allows
the generated code to ignore static initialization for the class
that it modifies. Using this modifier on classes whose static
methods and fields are accessed ofien makes a significant
difference in performance.

[0083] The described system facilitates hierarchical cach-
ing of generated output programs. Such a design increases
the speed at which the output program can be fetched and
executed by the client component. The best outcome is that
the Client Component itself can cache output programs,
completely bypassing network fetches.

[0084] FIG. 7 shows the various stages at which output
programs can be cached in a typical web-oriented imple-
mentation. At level 710, the least distance from the user, an
output program is cached in a local data store such as RAM
or disk directly accessible by a client component. At level
720, the output program is cached in a data store directly
accessible by an intermediate proxy, mirror or accelerator
web server on a local communication network accessible by
the client component. At level 730, the output program is
cached in a data store directly accessible by an intermediate
proxy, a mirror or an accelerator web server on the Internet.
At level 740, the output program is cached in a data store
directly accessible by the web server with which the server
component is integrated. At level 750, the output program is
cached in a data store directly accessible by the server
component. Any of levels 720, 730, 740 and/or 750 could be
clustered in some implementations to serve more users
concurrently and to improve throughput.

[0085] For a web-oriented implementation, and in particu-
lar one which produces full JavaScript output programs that
manipulate the browser document object model (sometimes
referred to as dynamic HTML or DHTML) as opposed to a
series of individual HTML web pages, the described system
is unique in that traditional web applications produce one
page at a time such that each page intermingles HTML and
data specific to that page. This inhibits aggressive hierar-
chical caching because, even though the HTML layout of the
page may not change between requests, the data incorpo-
rated may, so the entire page must be recopied to each cache
level. The mentioned web implementation, however, can
eliminate such situation because the output program does
not vary with the particular data that needs to be displayed.
Thus, by separating the application user interface and related
logic (that is, the output program) from the application data
(which is fetched by the output program while it is running),
changes to application data do not invalidated cached copies
of the output program. This technique makes caching far
more effective than traditional page-based caching.

US 2008/0022267 Al

[0086] A complication that normally arises with hierarchi-
cal caching is the question of “freshness” of cached copies.
How can intermediate caches recognize when their copies of
output programs are out of date with respect to the authori-
tative version (that is, original versions produced directly by
a server component)? In the worst case, every request
requires a full round-trip back to the server component
simply to ask the question “Is my copy out of date?” As
illustrated in FIG. 8, the described system solves this
dilemma by prescribing that every request for an output
program is first answered with a small but uncacheable
response (called the “response wrapper”) that includes a
reference to the actual output program 820. The output
program is in turn named with a “strong name.” The strong
name is computed from the content of the output program
itself. In a typical implementation, the strong name of an
output program is an MDS5 hash of all the bytes that
constitute the output program, where the MDS5 hash code has
enough bit capacity to avoid hash code collisions over all
reasonable-length output programs. Other techniques for
generating strong names could of course be used so long as
the net effect is that (1) no two output programs having
different contents could possibly have the same strong name
(and thus could not be confused with each other) and (2)
identical copies of an output program always do have the
same strong name.

[0087] The foregoing naming and caching methods solve
two problems. First, intermediate caches need never check
with the server component (810A, 810B) as to whether or
not a cached copy of an output program (820A, 820B) is
stale since the response wrapper comes directly from the
server component and is uncacheable, and it is the response
wrapper that dictates the strong name of the output program
that the client component 830 should request. When the
client component makes such a request based on the output
program’s strong name, any intermediate cache (e.g., local
cache 840) that contains a copy having that strong name can
be assured that it is up-to-date without double-checking with
the server component and can thus immediately respond to
the client component with its copy. Second, if server com-
ponents are clustered, there is no guarantee that the server
component instance that sends the response wrapper will be
the same server component instance that receives the output
program request. For example, some round-robin load bal-
ancers intentionally distributed requests to different server
component instances. Thus, it is vital that output programs
produced by different server component instances but from
the same input program have the same strong names.

[0088] Preferred implementations of the described system
whose output programs are web-accessible applications (for
example, JavaScript and DHTML applications as described
above) can incorporate a mechanism for monitoring soft-
ware license compliance for one of more instances of the
server component. As explained above in the discussion of
caching behaviors, a web-oriented implementation will typi-
cally return a response wrapper that references the strong
name of the appropriate output program. In this same
response wrapper can be placed a highly unique but well-
known identifier called a “license tag.” A globally unique id
(“GUID”) is an appropriate form of license tag, although
many other formulations of such a unique key are possible.
The response wrapper also contains an encrypted version of
the software license key of the server component that
produced the response wrapper, called the “broadcast

Jan. 24, 2008

license”. Since the response wrapper is produced first, when
web-based search engines such as Google request a web
application produced with the described system, they
receive and store a copy of the response wrapper. (Typically
they store a copy despite the response wrapper’s uncache-
able nature, although the server component may need to
compensate by marking a response wrapper temporarily
cacheable in the specific cases where a search engine, as
opposed to a web browser, is requesting the application.)
Thus, their search results database stores pages containing
both the well-known license tag and the broadcast license. It
is consequently possible to query said search engine for the
well-known license tag to produce a list of cached response
wrappers, each containing a broadcast license. By analyzing
these cached response wrappers and their broadcast licenses,
it is possible to identify duplicate software license keys,
which can subsequently be used to identify unauthorized or
unlicensed usage.

[0089] The server component license key is typically
implemented as an encrypted block of information including
information on the customer, serial number, licensed pro-
cessor count, and so forth which can be decrypted and
verified by a server component instance. An implementation
should not broadcast the server license in the response
wrapper in an un-encoded form, as it would be very easy for
others to copy license keys and use without authorization.
Thus, a preferred implementation of the server component
encrypts the license key using a different public key suitable
for cryptography such that only the implementer of the
server component (typically a software vendor) would have
the necessary private key to decrypt the broadcast license
back into the issued license, allowing a vendor who so
chooses to begin a trail of investigation to identify unau-
thorized copying of license keys.

[0090] The embodiments described above, and in the
documents and compact discs incorporated herein as part of
the incorporated provisional applications, are given as illus-
trative examples only. It will be readily appreciated by those
skilled in the art that many deviations may be made from the
specific embodiments disclosed in this specification without
departing from the invention as claimed below.

1. A method of generating an interactive program from an
input program, the method comprising the steps of:

a) receiving a request for an interactive application from
a client,

b) selecting an input program in an input program lan-
guage based upon the received request,

¢) parsing the selected input program into an abstract
syntax tree,

d) updating the abstract syntax tree based upon one or
more deferred binding requests, and

e) generating the interactive application in a target lan-
guage from the updated abstract syntax tree.
2. The method of claims 1, and further comprising the step
of optimizing the abstract syntax tree.
3. The method of claims 1, wherein the step of updating
the abstract syntax tree comprises the steps of:

i) making a deferred binding decision for a requested class
to produce a substitute class, and

US 2008/0022267 Al

il) modifying the abstract syntax tree by replacing
deferred binding instantiations of the requested class
with the substitute class.

4. The method of any of claims 3, wherein the step of

making a deferred binding decision comprises the steps of:

(1) retrieving context information, and

(2) selecting or generating the substitute class based upon

the retrieved context information.

5. The method of any of claims 4, wherein the step of
making a deferred binding decision further comprises the
step of retrieving rule information and wherein the step of
selecting or generating the substitute class is further based
upon the retrieved rule information.

6. The method of any of claims 3, wherein the step of
making a deferred binding decision comprises the steps of:

(1) retrieving rule information, and

(2) selecting or generating the substitute class based upon

the retrieved rule information.

7. The method of any of claims 3-6, and further compris-
ing the step of optimizing the abstract syntax tree.

8. The method of any of claims 1-6, wherein the input
program comprises embedded code in the target language
and wherein the step of generating the interactive applica-
tion comprises incorporating the embedded code.

9. The method of any of claims 1-6, wherein the step of
generating the interactive application comprises incorporat-
ing a server license key into the interactive application.

10. The method of claim 9, wherein the server license key
is encodes identification information associated with a
server component.

11. The method of any of claims 1-6, wherein the input
program comprises embedded hints in the input program
language and wherein the step of generating the interactive
application is based at least in part on the embedded hints.

12. The method of any of claims 1-6, wherein the step of
generating the interactive application comprises generating
the interactive application with embedded information that
facilitates correct caching of the interactive application at
one or more caching levels.

13. The method of any of claims 1-6, wherein the input
program comprises at least one portion of exception han-
dling code and wherein the step of generating the interactive
application comprises adapting the exception handling code
into functionally similar exception handling code in the
target language.

14. One or more computer readable media storing instruc-
tions that upon execution by a computer cause the computer
to execute any of the methods of claims 1-6.

Jan. 24, 2008

15. A method of verifying license compliance for a Web
application, the method comprising the steps of:

a) generating a Web application comprising a broadcast
key and a license tag;

b) making the generated Web application available for
review by a Web search engine;

¢) querying the search engine for a selected license tag,
thereby generating a list of reviewed Web applications;
and

d) evaluating the broadcast keys associated with each Web
application in the list of reviewed Web application to
identify duplicate broadcast license keys.

16. The method of claim 15, and further comprising the

step of generating a license tag.

17. The method of claim 16, wherein the step of gener-
ating a license tag comprises assigning a globally unique
identifier.

18. The method of any of claims 15-17, and further
comprising the step of generating a broadcast key.

19. The method of claim 18, wherein the step of gener-
ating a broadcast key comprises the steps of:

1) retrieving a raw key;

i) applying a symmetric encryption to the raw key,
thereby generating a user key; and

iii) applying a symmetric encryption to the user key,

thereby resulting in the broadcast key.

20. The method of step 19, wherein the step of retrieving
araw key comprises the step of generating the raw key based
upon information associated with a user.

21. The method of claim 20, wherein the step of gener-
ating the raw key is further based upon information associ-
ated with a licensed hardware platform.

22. One or more computer readable media storing instruc-
tions that upon execution by a computer cause the computer
to execute any of the methods of claims 15-17.

23. A system for generating an interactive program from
an input program, the system comprising:

a) means for selecting an input program in an input
program language,

b) means for parsing the selected input program into an
abstract syntax tree,

¢) means for updating the abstract syntax tree based upon
one or more deferred binding requests, and

d) means for generating the interactive application in a
target language from the updated abstract syntax tree.

#* * #* % %

